Material control of stem cell differentiation: challenges in nano-characterization.

نویسندگان

  • P C Dave P Dingal
  • Dennis E Discher
چکیده

Recent experiments have revealed that stem cells respond to biophysical cues as well as numerous biochemical factors. Nanoscale properties at the cell-matrix interface that appear to affect adherent stem cells range from matrix elasticity to porosity-dependent matrix tethering and geometry of adhesive linkages. Some stem cells can also remodel their immediate environment to influence phenotype, but this depends on matrix-material properties such as covalent bonding and soft versus hard materials. Efforts to combine both matrix instructions and active cell feedback are required to properly direct stem cell behavior. Comparisons to tissues will be increasingly key and have begun to reveal remodeling of nuclear factors that influence epigenetics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Raman Spectroscopic Characterization of Hepatic Differentiation of Mesenchymal Stem Cells

Background and Aims: Mesenchymal stem cells (MSCs) are a preferred cell source for the generation of hepatocyte-like cells in regenerative medicine. They can be isolated from different sources, including adipose tissues. The Raman spectroscopy approach was evaluated for quick and efficient identification of MSCs differentiation status and a broader perspective on cell differentiation. Material...

متن کامل

Stem Cell Bone Differentiation on Polyol Lactic Acid Composite Nanoparticles Containing 45S5 Bioactive Glass Nanoparticles

Abstract Background and Objectives Now day, using of stem cells and nanoparticles in the differentiation of stem cells is considered as a therapeutic approach. The purpose of this study was to synthesize and characterize nanocomposite polyacrylic polycarboxylic acid containing nanoparticles of biologically active glass 45S5 crushed and assessment effect of this composite on the propagation and...

متن کامل

The Effects of Iron Oxide Nanoparticle on Differentiation of Human Mesenchymal Stem Cells to Osteoblast

Introduction: IIron oxide nanoparticles (IO NP) have an increasing number of biomedical applications. To date, the potential cytotoxicity of these particles remains an issue of debate. Little is known about the cellular interaction or toxic effects of IO NP on differentiation of stem cells. The aim of the present study was to investigate the possible toxic role of different doses of IO NP in di...

متن کامل

PLLA/HA Nano composite scaffolds for stem cell proliferation and differentiation in tissue engineering

Abstract Due to their mulitpotency, Mesenchymal stem cells (MSCs), have the ability to proliferate and differentiate into multiple mesodermal tissues. The aim of this study was to isolate MSCs from human Umbilical Cord (hUCMSCs) to determine their osteogenic potential on nanofibrous scaffolds. To this end, Poly (L-lactic acid) (PLLA)/Nano hydroxyapatite (HA) composite nanofibrous scaffolds were...

متن کامل

Comparison of Proliferation and Osteoblast Differentiation of Marrow-Derived Mesenchymal Stem Cells on Nano- and Micro-Hydroxyapatite Contained Composite Scaffolds

Bones constructed by tissue engineering are being considered as valuable materials to be used for regeneration of large defects in natural bone. In an attempt to prepare a new bone construct, in this study, proliferation and bone differentiation of marrow-derived mesenchymal stem cells (MSCs) on our recently developed composite scaffolds of nano-, micro-hydroxyapatite/ poly(l-lactic acid) were ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current opinion in biotechnology

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2014